

Mitral valve anatomy for Transcatheter techniques

Cardiothoracic and Vascular Surgery Department Hôpital Louis Pradel LYON - France

OBADIA Jean-François

PMVR Summit – Barcelona - 19-20th June 2015

Ring

Leaflets

Chordae

-) Ring) Leaflets
- 3) Subvalvular apparatus
- + Atrium + Ventricle

Anatomy of human mitral valve in adult cadaver and comparative anatomy of the valve

ROBERT WALMSLEY British Heart Journal, 1978, 40, 351-366 From The Department of Anatomy and Experimental Fainology, 1 ne University, St Anarews, Scotlana

Conclusion

OBADIA Jean-François

The Ring is not a Ring

Ring

Leaflets

Chordae

Figure 3 A dissection showing the left (L) and right (R) fibrous trigones revealed by removing the left and non-coronary aortic sinuses. The trigones are expansions of fibrous tissue at either end of the area of aortic-mitral valvar continuity. The right fibrous trigone together with the membranous septum forms the central fibrous body. The diagrams represent two of the cases reported in the work by Angelini and colleagues.⁵ They show the variation in completeness of the so-called valvar annulus (green areas).

10.0 7.5 mm 5.0 2.5

Conclusion

THREE

FOUR

TWO

0.0

ONE

3

FIVE

Ring

A Study of Functional Anatomy of Aortic-Mitral Valve Coupling Using 3D Matrix Transesophageal Echocardiography

Federico Veronesi, PhD; Cristiana Corsi, PhD; Lissa Sugeng, MD, MPH; Victor Mor-Avi, PhD; Enrico G. Caiani, PhD; Lynn Weinert, BS; Claudio Lamberti, MS; Roberto M. Lang, MD

Circ Cardiovasc Imaging. 2009;2:24-31

OBADIA Jean-François

The Effect of Surgical and Transcatheter Aortic Valve Replacement on Mitral Annular Anatomy

Mathieu Vergnat, MD,* Melissa M. Levack, MD,* Benjamin M. Jackson, MD, Joseph E. Bavaria, MD, Howard C. Herrmann, MD, Albert T. Cheung, MD, Stuart J. Weiss, MD, PhD, Joseph H. Gorman III, MD, and Robert C. Gorman, MD

Ann Thorac Surg 2013;95:614–20

History

Höpitalx de Lyon

Leaflets

Chordae

Conclusion

Download this presentation on « chircardio-lyon.org »

otro santa

engagement

Noninvasive Evaluation of Coronary Sinus Anatomy and Its Relation to the Mitral Valve Annulus Implications for Percutaneous Mitral Annuloplasty

Laurens F. Tops, MD; Nico R. Van de Veire, MD, PhD; Joanne D. Schuijf, MSc; Albert de Roos, *Circulation*. 2007;115:1426-1432

Leaflets

	Severe MR	Patients With Severe MR					
	(n=90)	(n=15)	P*				
Minimal distance between CS and MVA							
At MVA level	4.8±2.5	7.3 ± 3.9	0.005				
At proximal CS	8.1±2.4	9.3±1.9	0.019				
At distal CS	8.3±3.1	12.1 ± 3.6	< 0.001				
MVA diameter (2-chamber view)	40.2±4.7	44.3±3.3	0.001				
MVA diameter (4-chamber view)	35.8 ± 4.4	39.9 ± 4.4	0.002				
MVA perimeter	118.1 ± 12.6	127.6±14.7	0.020				
Total CS length	110.1 ± 16.6	128.6 ± 14.6	< 0.001				

OBADIA Jean-François

PMVR Summit – Barcelona - 19-20th June 2015

Download this presentation on « chircardio-lyon.org »

Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation EUROPEAN SOCIETY OF CARDIOLOGY*

Karen P. McCarthy European Journal of Echocardiography (2010) 11, i3–i9

Conclusion

Ring

Leaflets

Chordae

Real-Time Three-Dimensional Transesophageal Echocardiography for Assessment of Mitral Valve Functional Anatomy in Patients With Prolapse-Related Regurgitation

Giovanni La Canna, MD^{a,*}, Iryna Arendar, MD^a, Francesco Maisano, MD^b, Fabrizio Monaco, MD^a, *Am J Cardiol 2011;107:1365–1374*

Conclusion

OBADIA Jean-François

Download this presentation on « chircardio-lyon.org »

OBADIA Jean-François

PMVR Summit – Barcelona - 19-20th June 2015

Download this presentation on « chircardio-lyon.org »

Ring

Asymmetric redirection of flow through the heart

Philip J. Kilner*, Guang-Zhong Yang*†, A. John Wilkes‡, Raad H. Mohiaddin*, David N. Firmin* & Magdi H. Yacoub§

NATURE | VOL 404 | 13 APRIL 2000

Leaflets

Chordae

MR in HCM: multiple mechanism

Leaflets

Chordae

1) Pulling Mechanism → Venturi effect

2) Pushing Mechanism \rightarrow Direct flow

Download this presentation on « chircardio-lyon.org »

OBADIA Jean-François

<u>111 patients</u> : 61 % EVEREST exclusion criteria 1 month → 34% grade 3 and 4

MVA<4cm2, coaptation length < 2 mm, Coaptation depth > 11 mm, flail gap > 10 mm and flail width ≥ 15mm.

Ring		All patients baseline		MR grade ≤ 2 at follow-up		MR grade \geq 3 at follow-up		p-Value	
		n = 79		n = 47		$\overline{n=24}$			
	MR grade \geq 3, (%)	100		100		100		ns	
Leaflets	Functional	53		62		42		ns	
	Mixed	38 9		8		8		ns	
	Jet origin A2–P2, (%) Jet direction, (%)	70		74		71		ns	
	Central	63		72		42		0.02	
	Posterolateral	19		17		25		ns	
	Anterior	10		4		25		0.02	
	Anterolateral	8		6		8		ns	
	Coaptation length, (mm)	3	± 1	3	± 1	3	± 1	ns	
	Coaptation depth, (mm)	8	±3	7	±3	10	± 2	0.01	
	Flail gap, (mm)	5	± 3	5	± 2	6	± 4	ns	
Chordae	Flail width, (mm)	13	± 4	13	± 2	15	± 2	ns	
	Length PMVL, (mm)	14	± 4	14	± 4	15	± 4	ns	
	Length AMVL, (mm)	25	± 5	24	± 5	27	± 6	0.049	
	Annulus diameter 0°	35	± 5	35	± 5	35	± 4	ns	
	Annulus diameter 120°	34	± 6	33	± 6	33	± 4	ns	

CARDIOLOGY

200

Mitral valve anatomy predicts outcome of MitraClip implantation Kirsten Boerlage-van Dijk, Int J of Cardiol 2014 174 (3) 724-6 Amsterdam

coaptation length < 2 mm, flail gap > 10 mm flail width ≥ 15mm.

Measurement of the flail width where flail width is largest in a transgastric short axis view (0°).

engagement

ot/o santa

Measurements of coaptation length in a 4 chamber view in 0°, Coaptation length is measured in the view where coaptation length is shortest

Chordae

History

flail gap is largest

Höpitalix de Lyon

Mitral valve anatomy predicts outcome of MitraClip implantation Kirsten Boerlage-van Dijk, Int J of Cardiol 2014 174 (3) 724-6 <u>Amsterdam</u>

Mitral valve anatomy predicts outcome of MitraClip implantation Kirsten Boerlage-van Dijk, Int J of Cardiol 2014 174 (3) 724-6 <u>Amsterdam</u>

Conclusion

80.YZ-

