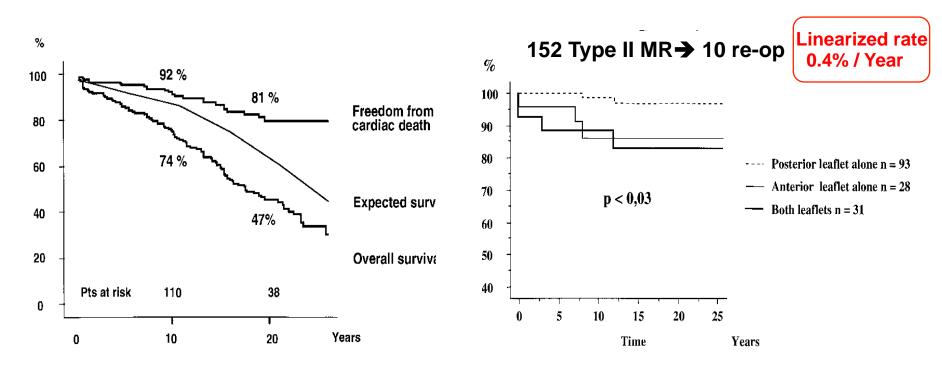
Professor Jean-François OBADIA Hôpital Louis Pradel - LYON - France

- 1 400 open heart Surgery
- 300 beating heart coronary Revasc
- 600 pediatric
- 500 General Thoracic
- 300 Vascular Surgery

- Transplantation


- Conservative Valvular Sugery

- 45 Heart / y
- 30 Lung / y
- x Heart/lung
- 30 Cardiac Assistance


- 100 ECMO

Aortic

Very long term results (more than 20 years...) Broussais-HEGP Paris "Braunberger E,...Carpentier A. Circulation 2001"

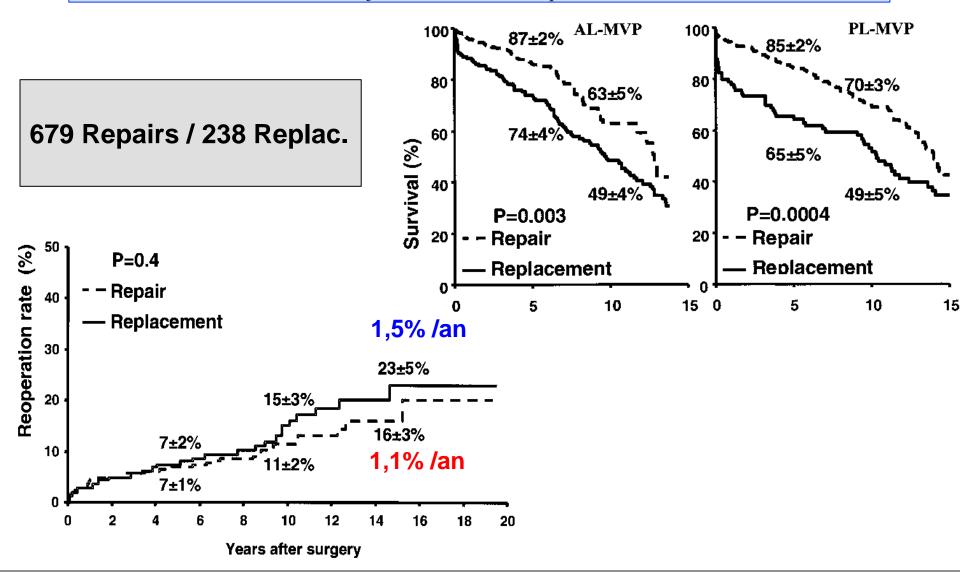
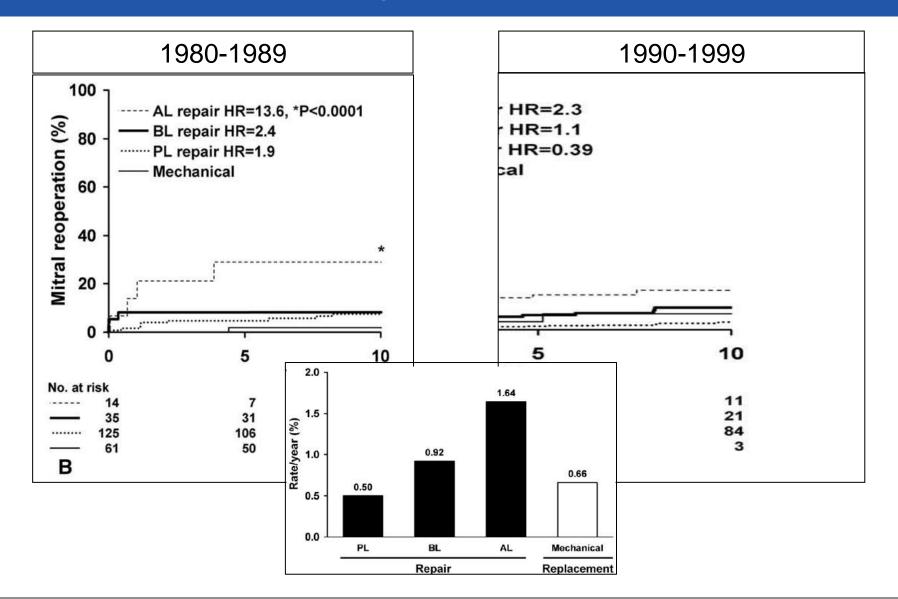


Figure 1. Rates at 10 and 20 years for freedom from carc **Figure 3.** Reoperations according to leaflet prolapse. MR indicates mitral regurgitation.


Very Long-Term Survival and Durability of Mitral Valve Repair for Mitral Valve Prolapse

Circulation. 2001;104[suppl I]:I-1-I-7

Dania Mohty, MD; Thomas A. Orszulak, MD; Hartzell V. Schaff, MD; Jean-Francois Avierinos, MD; Jamil A. Tajik, MD; Maurice Enriquez-Sarano, MD

Dystrophic MR : Survival advantage and improved durability ... « Suri MR et al. Ann Thorac Surg 2006;82:819–27 »

Risk of the learning Curve !!!

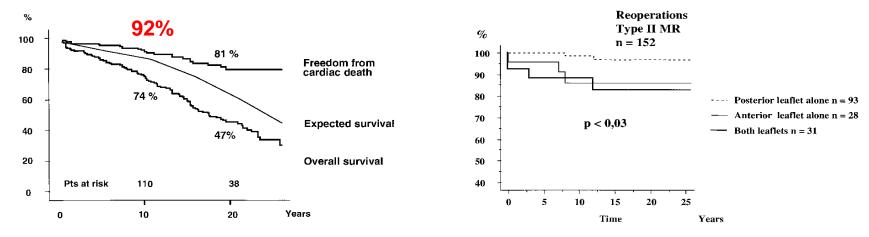
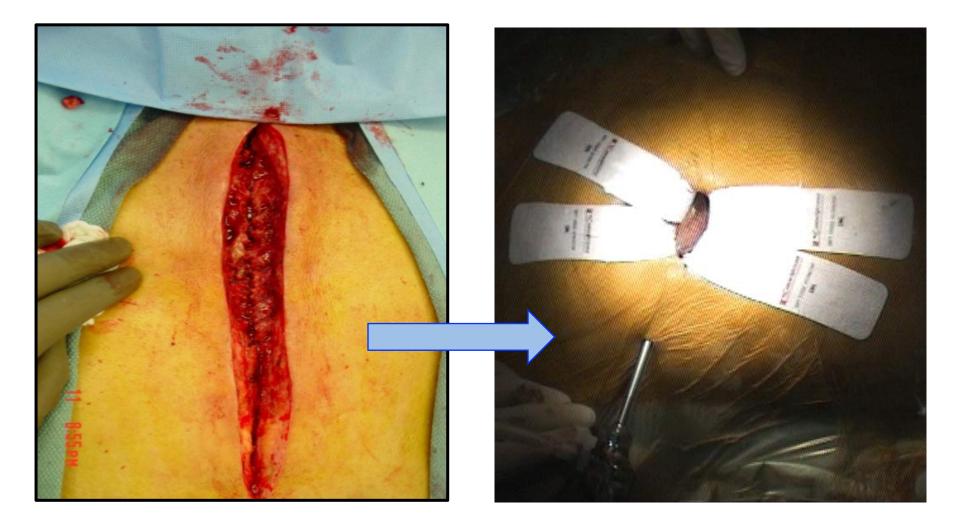
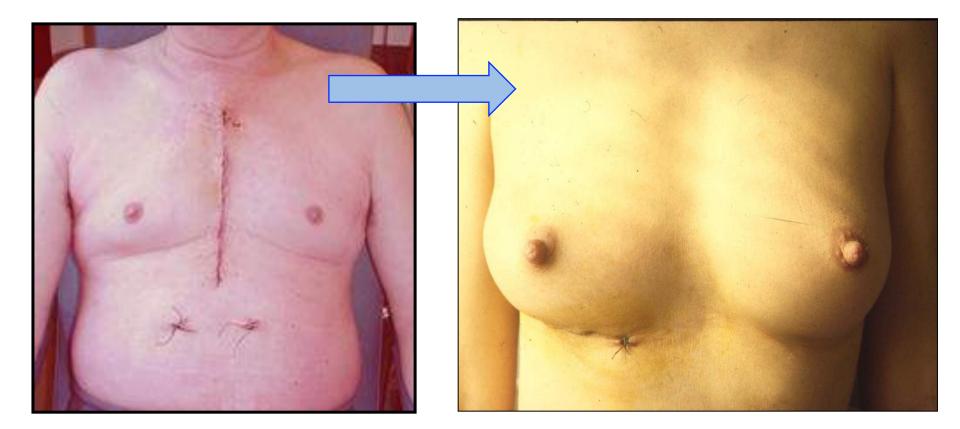
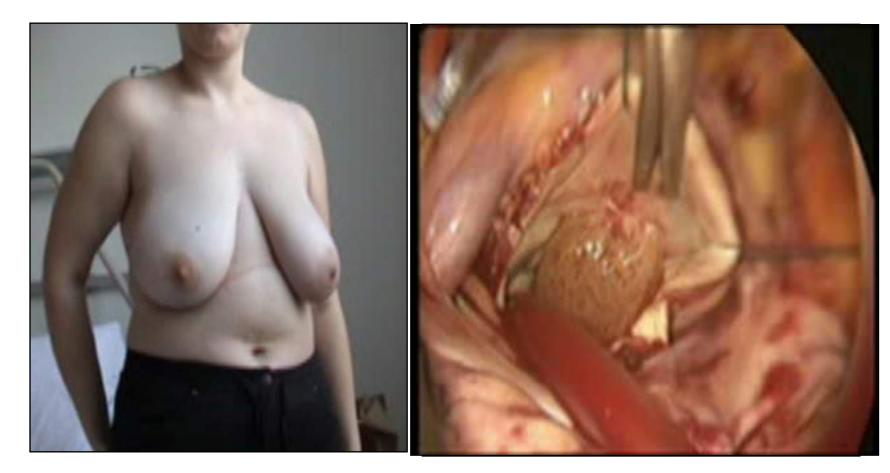




Figure 1. Rates at 10 and 20 years for freedom from cardiac death, expected survival, and overall survival.

Figure 3. Reoperations according to leaflet prolapse. MR indicates mitral regurgitation.

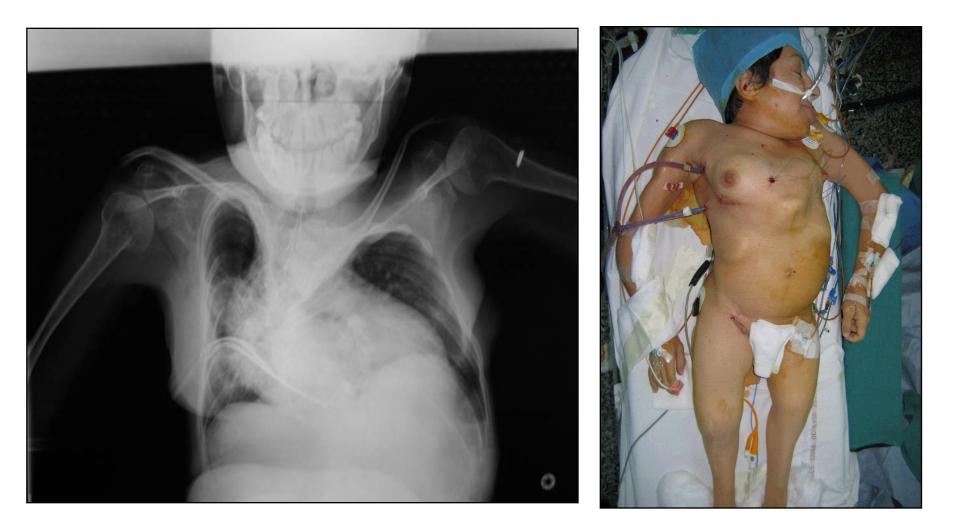
<u>F Mohr</u> <i>Leipzig</i>	1996-1997	51	9,8 %	4000 Euros
---------------------------------	-----------	----	-------	---------------

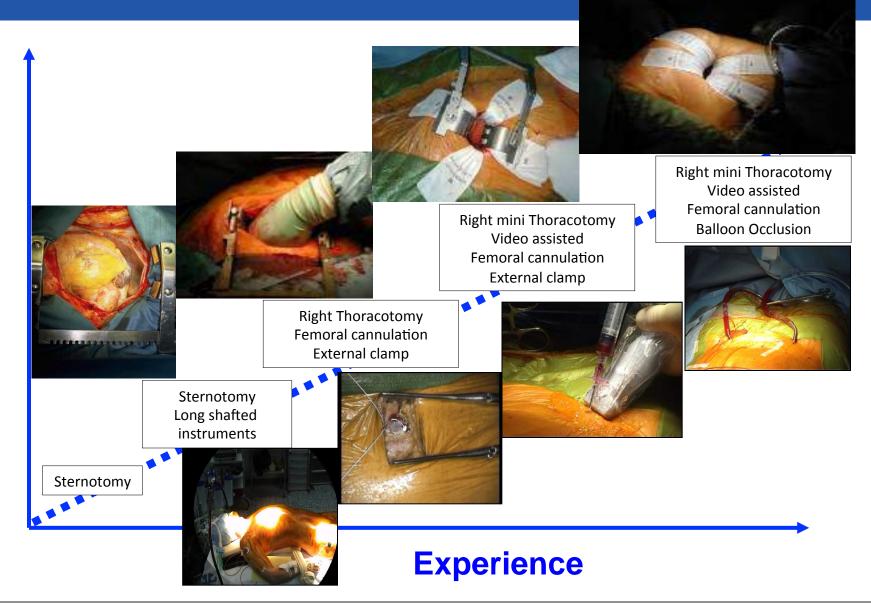


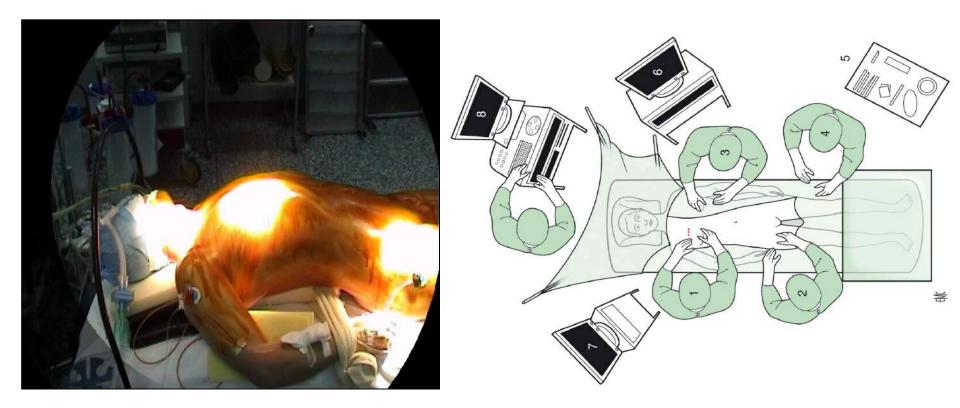
<u>F Mohr</u> Leipzig 1996-1997	51	9,8 %	4000 Euros
------------------------------------	----	-------	---------------

1000 Patients → **14 to 92 y**

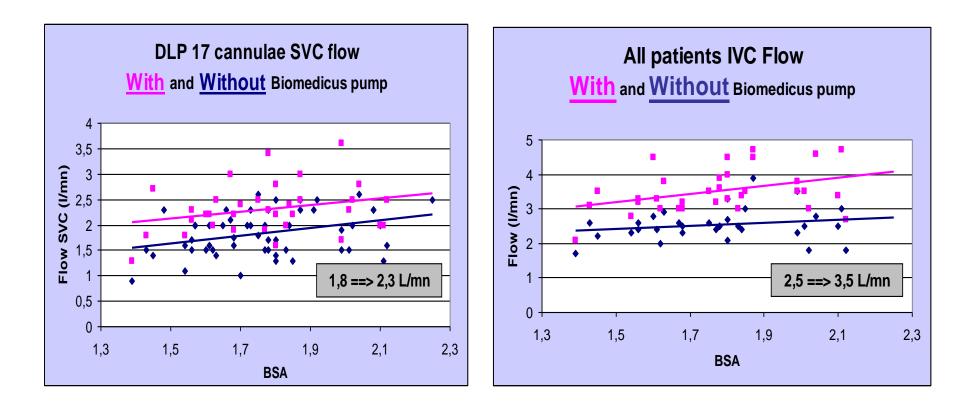
1000 Patients → 32 to 135 Kg

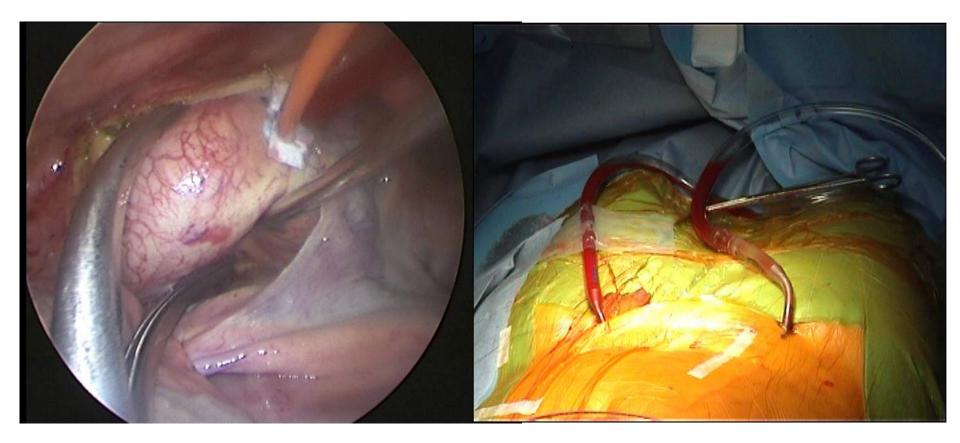

- <u>No limit in Size</u>



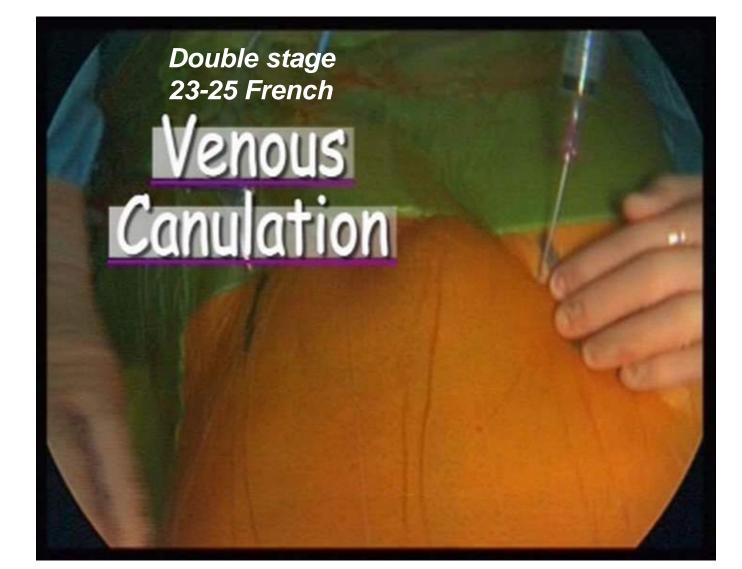


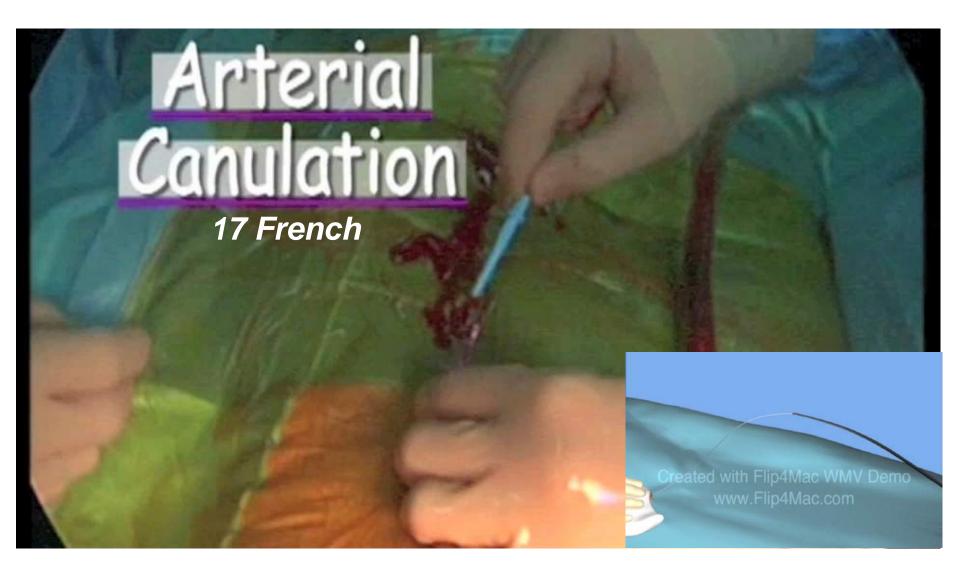
- A step by step "learning curve"


Procedure


Cheap, Safe, Simple and Reproducible,

Technique of Minimally Invasive Mitral Surgery


Double → Single venous Canulation


- Mini-Invasive Approach

Femoral Approach -> Per-cutaneous

Femoral Approach -> Per-cutaneous

Femoral Approach -> Per-cutaneous

Technique of Minimally Invasive Mitral Surgery

Percutaneous femoral artery access with Prostar device for innovative mitral and aortic interventions

Mathieu Vergnat^{a,b}, Gérard Finet^{a,c}, Gilles Rioufol^{a,c}, Jean-François Obadia^{a,b,*}

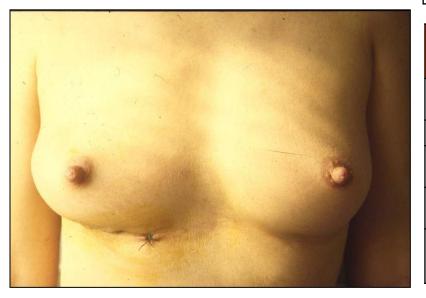
^a INSERM, U 886 'Cardioprotection', Laboratoire de Physiologie Lyon Nord, UCBL1, Lyon, France

^b Service de Chirurgie Cardiothoracique et Transplantation, Hôpital Cardiothoracique Louis Pradel, 28 avenue du Doyen Lépine, 69677 Lyon Bron, Cedex, France

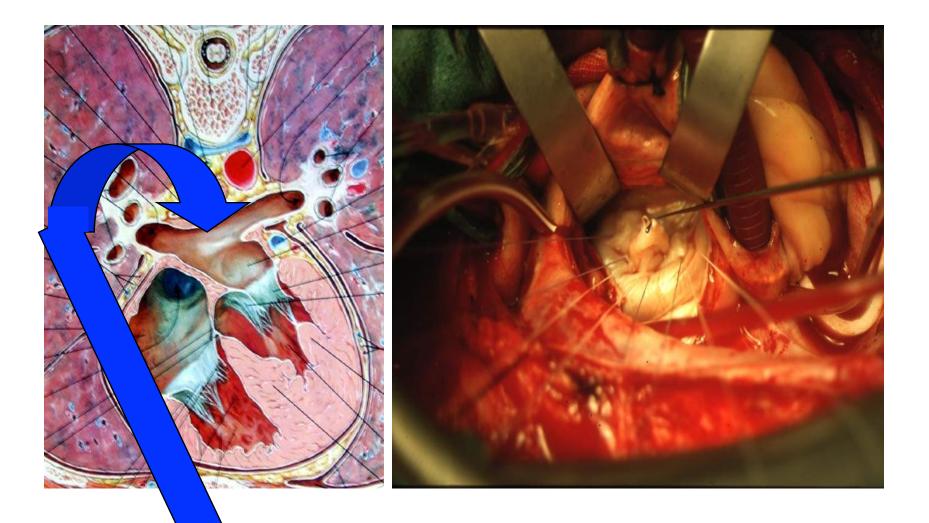
^c Service d' Hemodynamique et de Cardiologie Interventionnelle, Hôpital Cardiothoracique Louis Pradel,

28 avenue du Doyen Lépine, 69677 Lyon Bron, Cedex, France

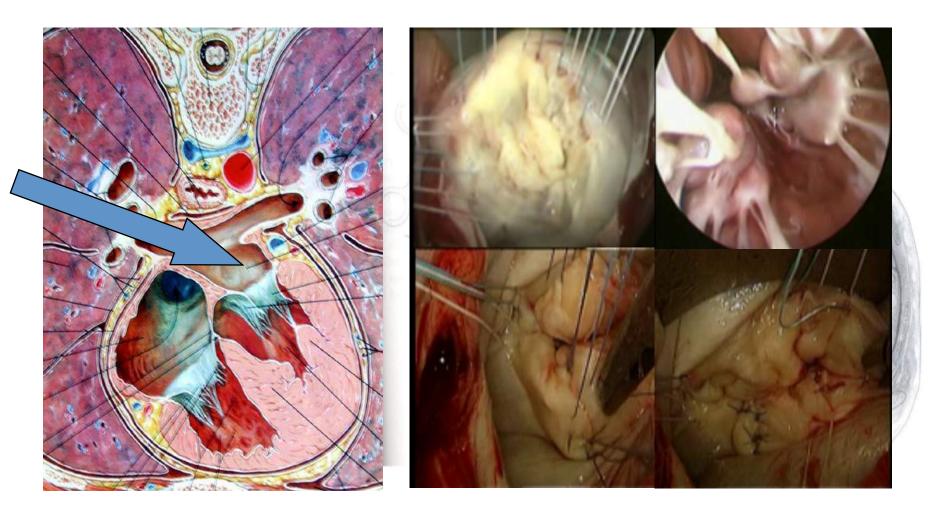
European Journal of Cardio-thoracic Surgery 39 (2011) 600-602


Table 1. Complication of arterial percutaneous access. Comparison between aortic and minimally invasive cardiac surgery, and between initial and late experience. Thrombosis/ischemia, seroma or infection rate were 0% and thus non-mentioned. Severe complications are shaded.

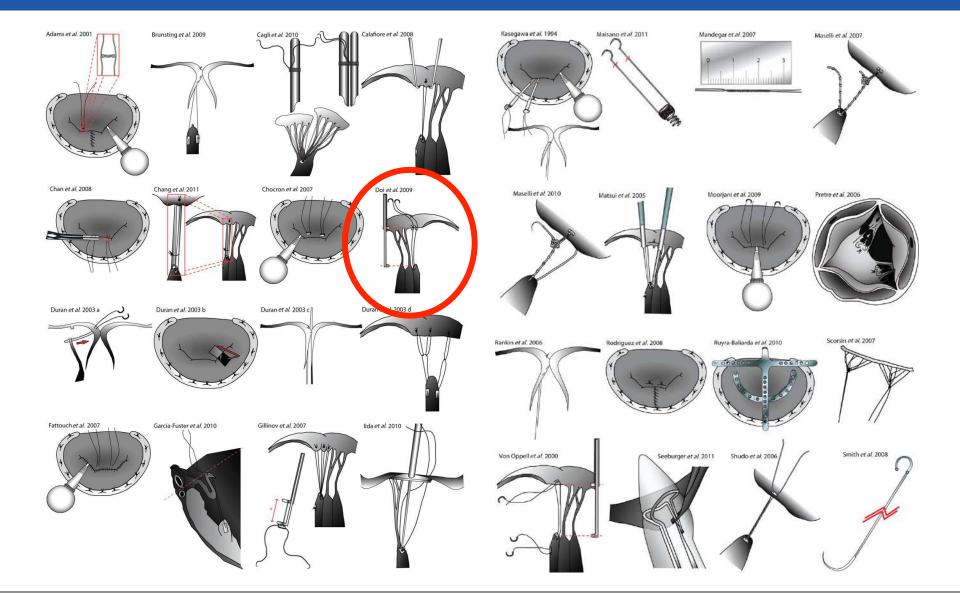
	TAVI	MICS	Initial experience	Late experience
n	40	116	50	106
Superficial bleeding	5	3	4	4
Cannulation failure	0	2	1	1
Retroperitoneal bleeding	1	2	3	0
Arteriovenous fistula	0	1	1	0
Hospital mortality	7.5% (2/3 vascular event)	0%	4% (TAVI vascular)	0.9% (TAVI non-vascular)

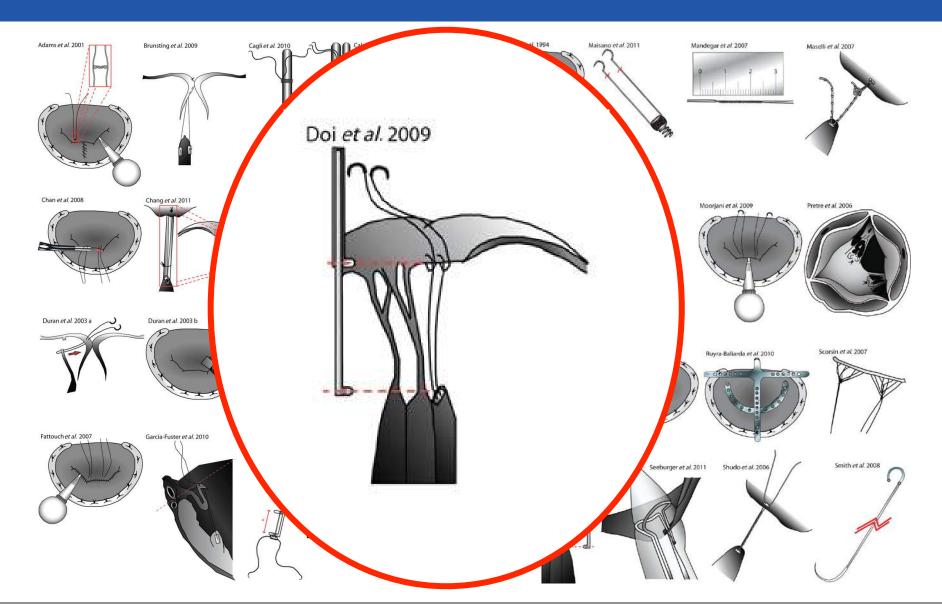

STERNOTOMIE	reference	Price
CANULES VEINEUSES N° 32	66132	75€
1 CANULE ARTERIELLE 20	77520	43,00€
1 PIC DE PLEGIE DBLE COURANT	21014	17,00€
	Total =	135€

VIDEO EndoClamp	Society	reference	Price
1 PROSTAR	Abbot	12322	350
1 PAIRE DE CISEAU VIDEO	Ethicon	5DCS	78
1 POUSSE NŒUD	Edwards	KP1	127
1 ENDOCLOSE	Autosuture	173022	28
Ballon pour Clampage Endo- Aortique	Edwards	EC 1001	1974
Canule Artérielle avec Y	Edwards	ER 21 ou 23Fr	258
Canule Veineuse	Edwards	QD 22 ou 25Fr	413
		Total =	3 228 €

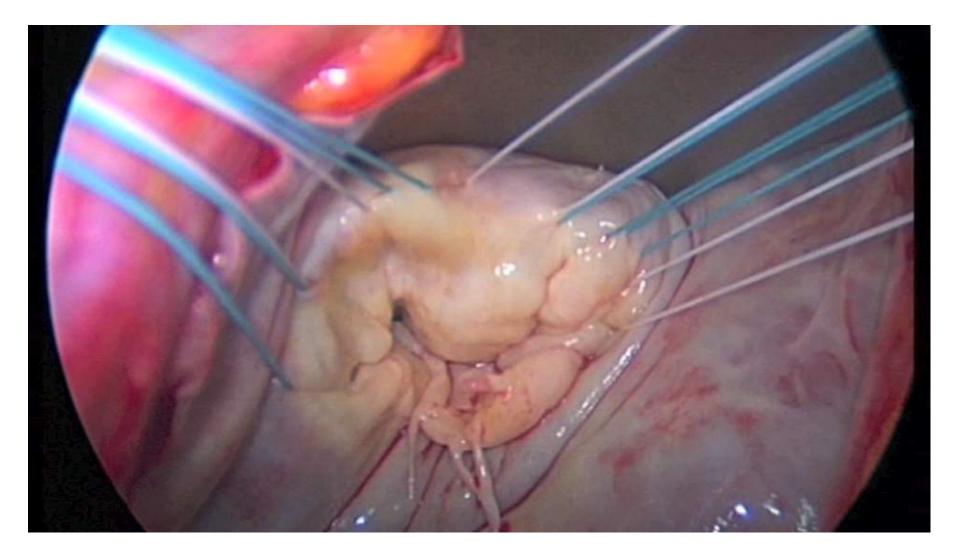


VIDEO Clamp TransThor	Society	reference	Price
1 CANULE VEINEUSE 23/25 ESTECH	Estech	200-150	410
1 KIT DE CANULATION ESTECH	ESTECH	200-120	32
1 CANULE ARTERIELLE 18 VIDEO	Medtronic	77718	43
Prostar	Abbott		350
		Total =	835€


Sternotomy → Mitral Valve Approach

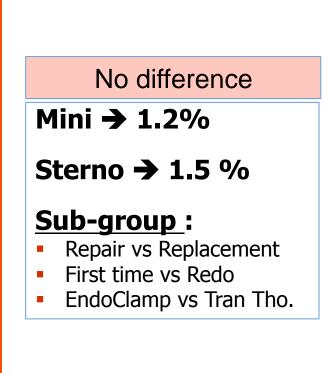

Direct Approach → **Right Thoracotomy**


« Artificial chordae for degenerative mitral valve disease I Michael et al. Interactive CVTS . 15 (2012) 1019–1032 »


« Artificial chordae for degenerative mitral valve disease I Michael et al. Interactive CVTS . 15 (2012) 1019–1032 »

Goretex Technique

<u>After > 1 000 Pts</u> → *Cheap, safe and reproducible*


Meta analysis → 21 studies / 13 000 pts

2 Randomized Control Trials

Mortality, 30 days: Mini- vs Conv-MVR

	Mini M		Conventional			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
4.2.1 RCTs							
Dogan 2005	0	20	0	20		Not estimable	
EI-Fiky 2000	0	50	0	50		Not estimable	
Subtotal (95% CI)	-	70		70		Not estimable	
Total events			0				
Heterogeneity: Not ap	•						
Test for overall effect:	Not appl	capie					
4.2.2 Propensity con	nnarison						
GJS-2010	55	4322	47	4322	67.3%	1.17 [0.79, 1.72]	_
MT-2010	0	261	47 0	4322	07.370	Not estimable	T
Subtotal (95% CI)		4583	0	4436	67.3%	1.17 [0.79, 1.72]	•
Total events	55		47				ſ
Heterogeneity: Not ap							
Test for overall effect	•	(P = 0.4)	3)				
		ç	-,				
4.2.3 Cohort							
Bolotin 2004	2	38	2	33	2.8%	0.87 [0.13, 5.83]	
Burfeind 2002	0	60	21	155	1.3%	0.06 [0.00, 0.97]	
Chitwood 1997	1	31	2	100	1.8%	1.61 [0.15, 17.19]	
Folliguet 2006	0	25	0	25		Not estimable	
Galloway 2009	9	712	3	223	6.0%	0.94 [0.26, 3.44]	_ _
Gersak 2005	6	105	7	110	9.0%	0.90 [0.31, 2.58]	
Glower 1998	0	21	1	20	1.0%	0.32 [0.01, 7.38]	
Grossi 2001a	0	100	1	100	1.0%	0.33 [0.01, 8.09]	
Karagoz 1999a	0	54	0	29		Not estimable	
Raanani 2010	0	61	0	82		Not estimable	
Ruttmann 2006	0	41	0	64	4.000	Not estimable	
Ryan 2010 Rpl	0	43	5	43	1.2%	0.09 [0.01, 1.59]	
Ryan 2010 Rpr	1 3	177 52	0 3	177 52	1.0%	3.00 [0.12, 73.15]	
Srivastava 1998 Suri 2009	2	350	0	365	4.2% 1.1%	1.00 [0.21, 4.73] 5.21 [0.25, 108.21]	
Wang 2009	1	192	1	203	1.1%	1.06 [0.07, 16.79]	
Woo 2006	0	25	1	203	1.0%	0.51 [0.02, 12.12]	
Subtotal (95% CI)		2087		1820	32.7%	0.80 [0.46, 1.39]	•
Total events	25		47				•
Heterogeneity: Tau ² =		i ² = 9.9		0.62): F	= 0%		
Test for overall effect:							
		`	·				
Total (95% CI)		6740		6326	100.0%	1.03 [0.75, 1.42]	♦
Total events	80		94				
Heterogeneity: Tau ² =	= 0.00; Ch	i² = 10.	86, df = 13 (P =	: 0.62); P	²=0%		0.005 0.1 1 10 200
Test for overall effect		`	<i>,</i>				Favours Mini MVR Favours Convent MVR
Test for subgroup dif	ferences:	Not ap	olicable				

Blood Transfusion (units): Mini- vs Conv-MVR

l i i i i i i i i i i i i i i i i i i i	Mir	ni MVR	L	Conve	ntional M	/IVR		Mean Difference	Mean Difference
Study or Subgroup	Mean		Total		SD		Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
5.6.1 RCTs									
Dogan 2005	0.5	0.77	20	1.05	1.29	20	10.4%		-
Subtotal (95% CI)			20			20	10.4%	-0.55 [-1.21, 0.11]	•
Heterogeneity: Not ap	•								
Test for overall effect: .	Z=1.64	, (P = 0	<i>.</i> .10)						
5.6.2 Cohort studies									
Bolotin 2004	2.86	3.7	38	5.5	2.87	33	6.9%	-2.64 [-4.17, -1.11]	
Burfeind 2002	3	1.17	60	12	4	155	10.3%		• •
Chitwood 1997	2.1	1.11	31	3.6	4	100	9.6%	-1.50 [-2.38, -0.62]	+
Felger 2001ManCa	0.9		55	1.1	0.62	50	11.6%		· · · · · · · · · · · · · · · · · · ·
Felger 2001RobCa	1	0.33	72	1.1	0.33	50	11.7%		1
Gersak 2005	1.39		105	4.85	6.4	110	6.3%		
Glower 1998	1.2		21	2.2	4.3	20	5.4%	• • •	+
McCreath 2003a	0.7	1.5	240	1.1	1.7	93	11.2%		1
Wang 2009	0.4		192	1.12	0.04	203	11.8%		
Woo 2006 Subtatal (05% CD	2.8	3	25	5	6	39	4.8%		
Subtotal (95% CI)	a aa. a		839	··	0.000/	853		-2.01 [-2.68, -1.33]	•
Heterogeneity: Tau ² =	•		•	•	< 0.0000	/1);	39%		
Test for overall effect: .	Z = 5.85)(P < U	.00001)					
Total (95% CI)			859			873	100.0%	-1.85 [-2.48, -1.22]	•
Heterogeneity: Tau² =	0.88; C	hi = 6'	89.65, r	f = 10 (F)	′ < 0.00C	J01); I² =	: 99%		-20 -10 0 10 20
Test for overall effect: .	Z = 5.77	′ (P ≤ 0	1.00001)					Favours Mini MVR Favours Convent MVR
Test for subgroup diffe	erences	/: Chi ≊ ≉	= 0.25,	df = 1 (P	= 0.62),	I ² = 0%			

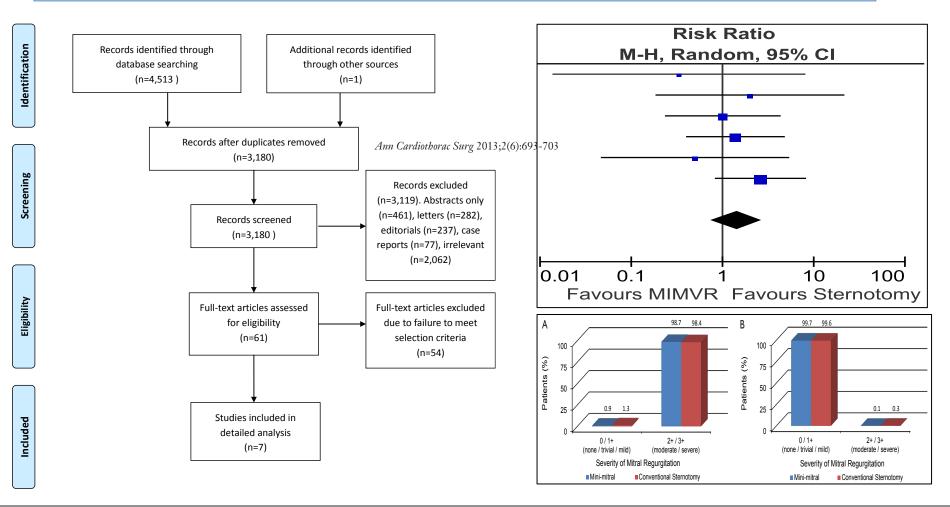
Mini I S → Less Blood transfusion

Technique of Minimally Invasive Mitral Surgery

Minimally Invasive Versus Sternotomy :

Longer

- crossclamp time, WMD [95% CI] = 21 [10 33] min (overall of 27 studies). In sub-analysis, the increased XCL time was found mainly for repair, but not for replacement
- cardiopulmonary bypass time, WMD [95% CI] = 33 [19 47] min (overall of 30 studies).
- procedure time, WMD [95% CI] = 0.8 [0.4-1.2] hours (14 studies)


Shorter

- ventilation time, WMD [95% CI] = -2.1 [-3.4, -0.8] hours (20 studies)
- ICU length of stay, WMD [95% CI] = -0.5 [-0.7, -0.3] days (20 studies)
- Hospital length of stay, WMD [95% CI] = -1.6 [-2.1, -1.1] days (28 studies)

A meta-analysis of minimally invasive versus conventional mitral valve repair for patients with degenerative mitral disease

Christopher Cao¹, Sunil Gupta¹, David Chandrakumar¹, Thomas A. Nienaber¹, Praveen Indraratna¹, Su C. Ang¹, Kevin Phan^{1,2}, Tristan D. Yan^{1,2} Ann Cardiothorac Surg 2013;2(6):693-703

¹The Collaborative Research (CORE) Group, Macquarie University, Sydney, Australia; ²The Royal Prince Alfred Hospital, Sydney University, Sydney, Australia

Long Term Results of MIS

"Minimally invasive mitral valve surgery: <u>The Leipzig experience</u> *Piroze M... F Mohr. Ann Cardiothorac Surg 2013;2(6):744-750"*

Preoperative variables	3438 Patients	Outcomes	n (0/)
Age in years	60.3±13	30-day mortality	23 (0.8)
Male	1,733 (61.3)	Low output syndrome	31 (1.1)
Body-mass index (kg/m²)	25.6±3.9	Failed mitral valve repair	45 (1.6)
Preoperative cerebrovascular accider	nt 90 (3.2)	Re-exploration for bleeding	198 (7)
Left ventricular ejection fraction (%)	56.8±18.9	Myocardial infarction	18 (0.6)
Prior cardiac surgery	152 (5.4)	Sepsis	24 (0.8)
Active endocarditis	36 (1.3)	Stroke	57 (2)
Timing of surgery		Postoperative new dialysis	87 (3.1)
Elective	2,632 (93)	Postoperative symptomatic neuropsychotic	71 (2.5)
Urgent/emergent	197 (7)	syndrome	
Log EuroSCORE (%)	4.9±6	Hospital stay, days	12.2±9.4

Rate of repair in minimally invasive mitral valve surgery Ann Cardiothorac Surg 2013;2(6):751-757

Patrick Perier, Wolfgang Hohenberger, Fitsum Lakew, Gerhard Batz, Anno Diegeler

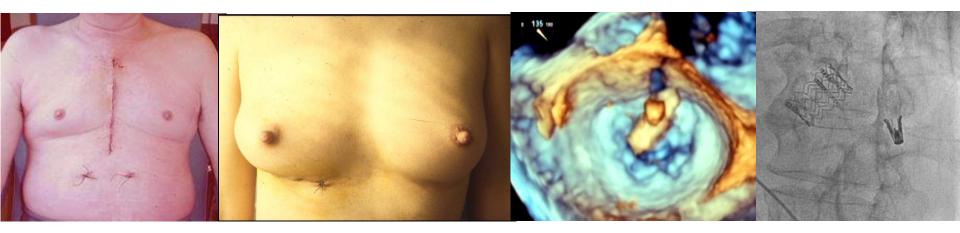
Herz und Gefäß Klinik, Salzburger Leite 1, 97616 Bad Neustadt/Saale, Germany

Table 1 Patient characteristics		Table 2 Operative details	
Demographics		Procedures	
Age (y, range)	56.15±11.62 (Mitral valve repair	835 (99.2%)
Female (no, %)	206 (24.5 %)	Mitral valve replacement	7 (0.8%)
NYHA functional class		Concomitant procedures	
1	278 (33%)	PFO closure	161 (19.4%)
	. ,	AF ablation therapy	115(13.6%)
II	405 (48.1%)	Tricuspid repair	20 (3.7%)
III	143 (17%)	CPB time (mean, range)	162±29.3
IV	16 (1.9%)	Aortic cross clamping time (mean, range)	95±28.5
Leaflet involvement		Table 3 Major adverse events	
Isolated posterior	688 (81.7%)	Death	2 (0.24%)
Isolated anterior	82 (9.7%)	Major stoke	5 (0.6%)
Bileaflet	72 (8.6%)	Re-operative mitral valve	2 (0.24%)
Cardiac comorbidity		Re-operative aortic valve	3 (0.35%)
•	64 8%+5 2%	Urgent/emergent CV surgery	3 (0.35%)
		Myocardial infarction	5 (0.6%)
LVEF (%)	64.8%±5.2%		

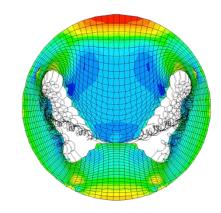
Grade 1 → 90,5 % Grade 2 → 9%

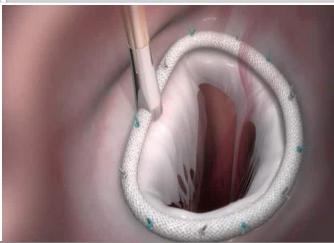
Work Shop

Post-Graduate Course – Lyon University



Less Invasive → More Collaboration




- Learning Curve
- Heart team

